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Dirac Equation with Central Potential: Discrete
Spectrum of the Hydrogen Atom in the
Robertson ± Walker Space ± Time

Antonio Zecca1

Received September 8, 1998

The formulation of the Dirac equation with electromagnetic field for a general
space ±time is specialized to the Robertson ±Walker metric. For a class of
physically meaningful electromagnetic potentials the angular part of the wave
function separates as in the free-field case. The scheme is explicitly studied for
a Coulomb potential. By using a realistic approximation method one recovers
the discrete energy levels of the hydrogen atom in Minkowski space. In case of
static space±time, the result is exact for zero curvature, while it is approximate
for nonzero curvature. The very good order of accuracy of the result is established
by a comparison with similar qualitative and perturbative results.

1. INTRODUCTION

It is well known that the formulation of the Dirac equation can be

extended to curved space±time in a general way (Penrose and Rindler, 1990).

The procedure is based originally on the idea of the minimal gravitational

coupling - a ® ¹ a in passing from flat to curved space±time. Such formula-

tions do not suffer from the consistency problem of similar equations relative
to higher values of the spin (Penrose and Rindler, 1990; Buchdahl, 1962,

1982; WuÈ nsch, 1985; Illge, 1993).

The electromagnetic field of potential A can be included in the scheme

as a generalization of the usual substitution - a ® - a 2 ieAa that follows the

canonical quantization. This procedure also can be done in a general space±

time (Illge, 1993), while it is not always consistent for values of the spin
greater than 1 (Fierz and Pauli, 1939). Besides the study of the general
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formulation, explicit solutions of the (free) Dirac equation in concrete space±

time have been obtained. The most representative example is Chandrasekhar’ s

integration of the Dirac equation relative to the Kerr metric (Chandrasekhar,
1983). It is obtained by a separation method by using the Newman±Penrose

formalism (Newman and Penrose, 1962). It turns out that the separation

method is a simple and powerful tool for the solution of the Dirac equation

if, besides the general formal solution (Penrose and Rindler, 1990), one is

also interested in practical solutions. With some elementary variants, the

separation method can be applied to integrate the Dirac equation also in a time-
dependent metric such as the Robertson±Walker (RW) metric (Zecca, 1996).

It is of interest to consider the Dirac equation with explicit electromag-

netic potentials in concrete examples of space±time.

In this paper we study the Dirac equation with a Coulomb potential in

the case of the RW space±time. The formulation is done by the spinor

language of Newman and Penrose. It turns out that for a class of central
electromagnetic spinor potentials, the angular part of the wave function can

be separated. The resulting angular dependence is the same as in the absence

of electromagnetic field. The theory is then applied to the case of a Coulomb

potential. Owing to an objective difficulty in separating the r and t depen-

dences the solution is performed in the special case of a constant ª radius of
the universe.º This assumption is very plausible on physical grounds by

taking into account that the atomic time intervals are negligible on a cosmolog-

ical scale.

Under this hypothesis, the radial and time dependences can be separated

and integrated by generalizing a standard method. The flat-space±time case

gives for the hydrogen atom the same discrete spectrum as in the Minkowski
case. Under an approximation (that is very good, as follows by a comparison

with related work), the result is independent of the curvature of the space.

With respect to the scattering states, the static flat-space±time case recovers

the Minkowski situation. In the case of positive and negative space curvature

the scattering states have different asymptotic behavior and it is difficult to

determine them exactly.

2. THE DIRAC EQUATION WITH ELECTROMAGNETIC
POTENTIAL

In the spinor language for curved space±time (Newman and Penrose,

1962) the Dirac equation with electromagnetic field takes the form

( ¹ AA8 1 iVAA8)P
A 1 i m ,QA8 5 0

( ¹ AA8 2 iVAA8)Q
A 1 i m ,PA8 5 0 (1)
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where m , ! 2 is the mass of the particle, ¹ AA8 is the covariant spinor derivative,

and VAA8 is the spinor potential of the electromagnetic field. The formulation

in Eq. (1) is equivalent to the general form of the spin-1/2 field equation as
discussed by Penrose and Rindler (1990). The imaginary unit has been put

into evidence in order to compare the present scheme with that used in

Zecca (1996), where notations and conventions of Chandrasekhar’ s book

are adopted.

Equation (1) can be developed by using the linking relation

¹ AA8 5 s a
AA8 ¹ a. By making explicit the covariant derivatives in terms of the

tabulated spin coefficients (Penrose and Rindler, 1990; Chandrasekhar, 1983)

with the identifications D [ - 008, d [ - 018, d , [ - 108, D [ - 118 , one finds

(D 1 e 2 r 1 iV00)P1 2 ( d , 1 p 2 a 1 iV10)P0 1 i m ,QÅ
0 5 0

( d 1 b 2 t 1 iV01)P1 2 ( D 1 m 2 g 1 iV11)P0 1 i m ,QÅ
1 5 0

(D 1 e 2 r 2 iV00)Q1 2 ( d , 1 p 2 a 2 iV10)Q0 1 i m ,PÅ 0 5 0

( d 1 b 2 t 2 iV01)Q1 2 ( D 1 m 2 g 2 iV11)Q0 1 i m ,PÅ 1 5 0 (2)

This is the explicit form of Dirac equation in a general curved space±time.

Further simplifications require concrete space±time model or symmetry prop-

erties of the spin coefficients and of the directional derivatives.

3. CENTRAL POTENTIALS IN THE ROBERTSON ± WALKER
METRIC

We now confine ourselves to equation (2) in the case of the Robertson±
Walker metric of the form

ds2 5 dt2 2 R2(t) F dr2

1 2 ar2 1 r2 (d u 2 1 sin2 u d f 2) G (a 5 0, 6 1) (3)

To further study equation (2) by the Newman±Penrose formalism, we choose

the null tetrad frame {li, ni, mi, m,i} previously used in different situations

(Zecca, 1996; Montaldi and Zecca, 1994) in terms of which the directional

derivatives and the spin coefficients (which we give for the reader ’ s conve-

nience) are given respectively by

D [ li - i 5 2 2 1/2[ - t 1 R 2 1(1 2 ar2)1/2 - r]

D [ ni - i 5 2 2 1/2[ - t 2 R 2 1(1 2 ar2)1/2 - r]

d [ mi - i 5 2 2 1/2[ - u 1 i csc u - f ]/(rR)

d , [ m,i - i 5 2 2 1/2[ - u 2 i csc u - f ]/(rR) (4)



948 Zecca

r 5 2 2 2 1/2[rRÇ 1 (1 2 ar2)1/2]/(rR)

m 5 2 2 1/2[rRÇ 2 (1 2 ar2)1/2]/(rR)

b 5 2 a 5 2 2 3/2 cot u /(rR), e 5 2 g 5 2 2 3/2RÇ /R

In view of further simplification it is convenient to set

F1 5 P1, F2 5 2 P0, G1 5 2 QÅ
0, G2 5 2 QÅ

1 (5)

The general form of the Dirac equation with electromagnetic field in the RW

space±time is then

(D 1 e 2 r 1 iV00)F1 1 ( d , 2 a 1 iV10)F2 5 i m ,G1

( D 1 m 2 g 1 iV11)F2 1 ( d 2 a 1 iV01)F1 5 i m ,G2

(D 1 e 2 r 1 iV00)G2 2 ( d 2 a 1 iV10)G1 5 i m ,F2

( D 1 m 2 g 1 iV11)G1 2 ( d , 2 a 1 iV01)G2 5 i m ,F1 (6)

If the spinor potential is of central type and diagonal, the angular part of the

wave function separates as in the free-field case. Suppose indeed

VAA8 5 VAA8(r, t), V01 5 V10 5 0 (7)

Accordingly, the f dependence can be directly separated in equation (6) by

the substitution (F, G) ® (F, G)exp(im f ), m 5 0, 6 1, 6 2, . . . . By defining,

as in the free-field case,

L 6 5 - u 7
m

sin u
1

1

2
cot u (8)

equation (6) becomes

rR ! 2(D 1 e 2 r 1 iV00)F1 1 L 2 F2 5 i m ,rR ! 2G1

rR ! 2( D 1 m 1 e 1 iV11)F2 1 L+F1 5 i m ,rR ! 2G2

rR ! 2(D 1 e 2 r 1 iV00)G2 2 L+G1 5 i m ,rR ! 2F2

rR ! 2( D 1 m 1 e 1 iV11)G1 2 L 2 G2 5 i m ,rR ! 2F1 (9)

where the wave function depends now on r, u , t. By setting

rR(t)F1 5 H1 (r, t)S1( u ), rR(t)F2 5 H2 (r, t)S2( u )

rR(t)G1 5 H2 (r, t)S1( u ), rR(t)G2 5 H1 (r, t)S2( u ) (10)



Dirac Equation with Central Potential 949

one gets

rR ! 2

H2

[DH1 1 ( e 1 iV00)H1] 2 i m ,rR ! 2 5 2
L 2 S2

S1

5 2 l

rR ! 2

H1

[ D H2 1 ( e 1 iV11)H2] 2 i m ,rR ! 2 5 2
L+S1

S2

5 l

rR ! 2

H2

[DH1 1 ( e 1 iV00)H1] 2 i m ,rR ! 2 5
L+S1

S2

5 2 l

rR ! 2

H1

[ D H2 1 ( e 1 iV11)H2] 2 i m ,rR ! 2 5
L 2 S2

S1

5 l (11)

The angular eigenvalue problem originating from the separation of equation

(11), L 2 L+S1 5 2 l 2S1 and L+L 2 S2 5 2 l 2S2, gives l 2 5 (l 1 1)2, (l 5 0,

1, 2, 3, . . .) if m 5 0 and l 2 5 (l 1 1/2)2 (l 5 ) m ) , ) m ) 1 1, ) m ) 1 2, . . .)
if ) m ) $ 1 (Montaldi and Zecca, 1994). One is then left with

DH1 1 ( e 1 iV11)H1 5 1 i m , 2
l

rR ! 2 2 H2

D H2 1 ( e 1 iV00)H2 5 1 i m , 1
l

rR ! 2 2 H1 (12)

If the spinor potential satisfies the condition

V00 5 V11 5 V(r, t) (13)

by using as independent variables

t 5 t (t) 5 #
t

0

dt

R(t)
, s 5 s (r) 5 #

r

0

dr

! 1 2 ar 2
(14)

so that D 5 ( - t 1 - s)/( ! 2R), D 5 ( - t 2 - s)/( ! 2R), and by further setting

rf 5 H1 2 H2, rg 5 H1 1 H2 (15)

equation (12) becomes, in terms of the functions f and g,

fs 1 gt 1
rs 2 l

r
f 1 g(2 2 1 RÇ 2 i m , ! 2R 1 i ! 2RV ) 5 0

gs 1 f t 1
rs 1 l

r
g 1 f (2 2 1 RÇ 1 i m , ! 2R 1 i ! 2RV ) 5 0 (16)

where fs 5 - f/ - s, RÇ 5 dR /dt, and rs 5 ! 1 2 ar 2.
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4. HYDROGEN ATOM

It is not difficult to show that equation (16) does not admit a solution
of the form f 5 A(s)T( t ), g 5 B(s)S( t ). [One can reach the same conclusion

by applying the reduction method developed for the free-field case (Zecca,

1996).] It is possible to study equation (16) under the conditions

ar2 ¿ 1 (rs ’ 1)

R 5 const 5 R0 (17)

R0 is the radius of the universe at the present time. The assumptions (17) are

very plausible for the study of the bounded states of the hydrogen atom.

The atomic dimensions and the time intervals involved are negligible on a

cosmological scale to a very good approximation.
We now apply the previous scheme to the case of a Coulomb potential

A m > (1/r, 0, 0, 0). The corresponding spinor potential is, by a suitable choice

of the proportionality constant and by using the explicit form of the assumed

null tetrad frame,

VAA8 5 s t
AA8 At 5

1

! 2 R0

x
r 1 1 0

0 1 2 (18)

As a consequence of equations (17) the t dependence factors out in the form
exp(ikR0 t ) 5 exp(ikt) and equations (16) become

f 8 1
1 2 l

r
f 1 ig 1 k0 2 m0 1

x
r 2 5 0

g8 1
1 1 l

r
g 1 if 1 k0 1 m0 1

x
r 2 5 0 (19)

where m0 5 m , ! 2R0, 8 5 d/ds, k0 5 kR0, and now f, g depend only on s.
Equation (19) has the formal structure of the radial Dirac equation for

the hydrogen atom in Minkowski space and reduces to it when a 5 0

(r 5 s) (Berestetski et al., 1972). All cases a 5 0, 6 1 can be studied in a
uniform way by generalizing a standard procedure of integration (Darwin,

1928; Gordon, 1928) by setting

f 5 Ae 2 r /2 r g 2 1 (q1 1 q2), r 5 2 d r(s)

g 5 Be 2 r /2 r g 2 1 (q1 2 q2)

A

B
5 1 k 2 m

k 1 m 2
1/2

, d 5 R0(m
2 2 k2)1/2 (20)
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From equations (20) and (19) one gets exactly

r ! 1 2 ar 2q81 1 q1 F ( g 2 1) ! 1 2 ar 2 1 1 2
r
2

( ! 1 2 ar 2 2 1)

1
ik x

! k2 2 m2 G 2 q2 1 l 1
i x m

! k2 2 m2 2 5 0

r ! 1 2 ar 2 q82 1 q2 F ( g 2 1) ! 1 2 ar 2 1 1 2
r
2

( ! 1 2 ar 2 1 1)

2
i x k

! k2 2 m2 G 1 q1 1 2 l 1
i x m

! k2 2 m2 2 5 0 (21)

where 8 5 d/d r .

It is now possible to study the bounded states of the hydrogen atom by

applying once again the approximation ar2 ¿ 1 because the corresponding

solutions of equations (21) must be localized into atomic dimensions. Equa-

tions (21) become then

r q81 1 1 g 1
i x k

! k2 2 m 2 2 q1 2 1 l 1
i x m

! k2 2 m2 2 q2 5 0

r q82 1 1 2 l 1
i x m

! k2 2 m2 2 q1 1 1 g 2
i x k

! k2 2 m2
2 r 2 q2 5 0 (22)

By choosing

g 5 ( l 2 2 x 2)1/2 (23)

we find that the system (22) separates into confluent hypergeometric
equations:

r q91 1 (1 1 2 g 2 r )q81 2 1 g 2
x k

! m2 2 k2 2 q1 5 0

r q92 1 (1 1 2 g 2 r )q82 2 1 1 1 g 2
x k

! m2 2 k2 2 q2 5 0 (24)

Bounded solutions for r 5 0 are then

q1 5 CF 1 g 2
x k

! m2 2 k2
, 1 1 2 g ; r 2

q2 5 DF 1 1 1 g 2
x k

! m2 2 k2
, 1 1 2 g ; r 2 (25)
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F(a, b; x) is the confluent hypergeometric function. The constants C, D are

not independent. Their relation comes from (22), (25) with r 5 0:

D 5
g 2 x k/ ! m2 2 k2

l 2 x m/ ! m2 2 k2
C (26)

The discrete spectrum of the hydrogen atom corresponds to the condition on

the wave function (cf. Zecca, 1995; Montaldi and Zecca, 1996)

# d3x ! 2 g( ) P0 ) 2 1 ) P1 ) 2 1 ) Q1 ) 2 1 ) Q0 ) 2) , ` (27)

which finally implies, by the previous substitutions and by factoring out the

(bounded) angular integral,

#
`

0

d r r 2 g e 2 r ( ) q1 ) 2 1 ) q2 ) 2) , ` (28)

By taking into account that the asymptotic behavior of the hypergeometric

function is , exp( r ) (Abramovitz and Stegun, 1970), we find that the conver-
gence of the integral (28) requires the truncation of both the hypergeomet-

ric series

g 2
x k

! m2 2 k2
5 2 nr , nr 5 1, 2, 3, . . . (29)

[If nr 5 0, then, from (22), x m/ ! m2 2 k2 5 6 l . Therefore if l , 0, then

D 5 0, by equation (20), and the solution is still acceptable (Berestetski et
al., 1972).] The discrete energy levels are then

k

m
5 F 1 1

x 2

(nr 1 ! l 2 2 x 2)2 G
2 1/2

(30)

The result (30) is independent of the value of a 5 0, 6 1 and coincides with
the Minkowski-space situation (Bethe and Salpeter, 1957). Under the second

of conditions (17) the result is exact for a 5 0, while it represents a good

approximation for the curved space±time cases.

With respect to the scattering states, the static case a 5 0 of equation

(21) coincides with the Minkowski-space case and its solution is well known
(e.g., Berestetski et al., 1972; Bethe and Salpeter, 1957).

The asymptotic behavior for large r of the solutions of equations (16),

(21) for a 5 2 1 is essentially different than for a 5 0. In the curved space

cases an explicit exact solution is difficult to determine due to the presence

of the square root terms, which cannot be neglected.
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5. COMPARISON WITH SIMILAR RESULTS

The results relative to the spectrum of the hydrogen atom are in a

complete agreement with the general results of Audretsch and SchaÈ fer (1978a,

b) as well as with the perturbative calculations of Parker (1980a, b). The

quantitative results obtained by Parker concern the correction of the Minkow-

ski spectrum (30) produced by the local curvature in a given general space±
time. In order to produce an energy-level shift of the same order of magnitude

as the Lamb shift of the hydrogen atom, one must have at least D ’ 2 3
10 2 3 cm, where D is the characteristic radius of curvature of the space±time

at the location of the hydrogen atom: D 2 2 , R a b g d , with R a b g d being the

Riemann tensor. In our case, with the notation of the previous section,

D , 1/R2
0 ¿ 2 3 10 2 3 cm. This establishes the accuracy of our

approximation.
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